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Abstract. Green’s function Monte Carlo methods are used to provide benchmarks for studies of low-
density neutron matter. The zero-temperature equation of state and pair correlation functions are studied
for the AV8′ NN interaction model, and for an idealized model comprised of neutrons with a short-range
interaction and an arbitrarily large (negative) scattering length. For this idealized problem the equation
of state is a constant multiplied by the Fermi-gas energy, this constant is found to be nearly 1/2. Similar
ratios are found for realistic NN interactions.

PACS. 26.60.+c Nuclear matter aspects of neutron stars – 21.65.+f Nuclear matter – 21.30.-x Nuclear
forces

1 Introduction

Low-density neutron matter is an interesting many-body
problem because of the very large s-wave scattering
length in the spin-0 channel, and the complications that
arise from the short-range repulsion and the tensor and
the L · S components in the nucleon-nucleon interaction.
Physically the ground state of neutron matter can be im-
portant in characterizing the properties of neutron-rich
nuclei and the low-density region of neutron stars.
The properties of neutron matter, even at low densi-

ties, are more difficult to determine than nuclear matter,
since the latter can be determined near equilibrium densi-
ties from the properties of nuclei. Microscopic many-body
theories, combined with realistic interaction models, offer
the prospect of accurate determinations of the properties
of neutron matter. It is hoped that these calculations will
prove useful, for example, in calculations of effective in-
teractions and energy-density functionals for neutron and
neutron-rich matter [1].
Traditionally, neutron matter has been studied in

Brueckner [2,3] or variational [4,5] theories. These meth-
ods have many strengths, but also some potential weak-
nesses. In particular, it can be difficult to characterize
the importance of many-body correlations. Monte Carlo
methods have been very successful in treating many-body
problems in other fields [6], as well as few-nucleon sys-
tems [7]. In this paper we report results of variational
Monte Carlo (VMC) and Green’s function Monte Carlo
(GFMC) calculations of neutron matter, using the same
methods employed to reproduce the binding energy of
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light nuclei. Promising advances have also been made com-
bining Auxiliary Field and Diffusion Monte Carlo meth-
ods [8] for the studies of neutron and nuclear matter.
While the standard method is limited to small numbers of
particles, it has proven very accurate in studies of light nu-
clei, and can provide valuable benchmarks. In particular,
these methods can be used to study the correlation func-
tions, which in traditional variational studies can differ
greatly with only fairly modest effects in the total energy.
We have also used Monte Carlo methods to study an

idealized case of neutrons interacting via a short-range
potential with an infinite scattering length. This problem
was proposed by Bertsch, and contains many of the inter-
esting features of realistic neutron matter. It should also
be of interest in studies of Fermi atomic gases, where at-
tempts are being made to study a system at very low tem-
perature. Dimensional arguments show that in this limit
the ground-state energy of such a system as a function of
energy must be a fixed fraction of the Fermi-gas energy.
Here we determine this fraction and study the resulting
pair distribution functions.

2 Interaction

Realistic models of the nuclear Hamiltonian generally take
the form

T = H + V = − h̄2

2m
∇2 + Vij + Vijk, (1)

where the nucleon-nucleon (NN) interaction contains one-
pion exchange at long range, intermediate-range terms
characterized by terms of two-pion exchange range, and



464 The European Physical Journal A

a phenomenological short-range interaction. Examples of
modern interactions that fit the NN scattering data with
χ2 ≈ 1 are the Reid-93, Nijmegen II [9], Bonn-CD [10]
and Argonne v18 (AV18) [11] interactions.
Each of these interactions have 6 momentum-

independent terms, with operator forms constructed from
1, σi · σj , Sij , and τi · τj . Simplified NN interaction mod-
els with these terms alone are called v6 interactions, those
which also include L ·S and L · Sτi · τj are called v8 mod-
els. These terms are the dominant terms in the NN in-
teraction; the calculations reported here are for the AV8′
NN interaction model obtained from the AV18 interac-
tion. The prime indicates that the potential has been refit
in the lowest partial waves, and is not a simple truncation
of AV18.
Realistic interaction models include additional terms

proportional to the square of the momentum, these are
required to get an accurate representation of all the par-
tial waves. Different models of the NN interaction may
have different (local or non-local) representations of the
one-pion exchange potential. These different representa-
tions are related by unitary transformations, and require
different two-nucleon currents as well as different three-
nucleon interactions the unitary transformations.
Three-nucleon interactions are also required to fit the

binding energy of light nuclei. The isospin dependence of
the three-nucleon interaction can play an important role
in the properties of neutron matter. This has been studied
extensively in light nuclei, where the Illinois TNI models
have been fit to nuclear levels up to A = 8 [7], and recent
calculations include up to mass 10 [12].
Relativistic effects can also be expected to play a role,

particularly at higher densities [13]. In general, the two-
nucleon interaction must depend not only upon the rel-
ative momenta of the two nucleons p = pi − pj , but on
the total momentum P = pi+pj . The lowest-order terms
in P2 can be obtained directly from the CM frame NN
interaction, as shown by Foldy and Friar [14]. This boost
interaction is repulsive, and has been estimated to con-
tribute approximately 2 MeV in the alpha-particle, and
raises the nuclear-matter saturation energy by approxi-
mately 4 MeV per nucleon. The density dependence of
this interaction is similar to that of the short-range TNI
terms in the Urbana and Argonne TNI models.
For the purposes of this study, we consider the minimal

semi-realistic interaction, the AV8′. Demonstrably accu-
rate calculations of such simple models are important in
order to believe results obtained with more refined interac-
tions. Light nuclei are under bound with this interaction,
and hence one expect the energies reported here to be too
high compared to a more complete calculation.

3 Methods

We compare results obtained with variational Fermi
hypernetted-chain (FHNC) methods to those obtained
with variational Monte Carlo (VMC) and Green’s func-
tion Monte Carlo (GFMC). FHNC methods have been

used extensively in studies of nuclear and neutron mat-
ter [13,5]. In its simplest form, FHNC is used to calculate
the expectation value of the energy:

〈H〉 = 〈ΨT|H|ΨT〉
〈ΨT|ΨT〉 , (2)

with a specific form of the trial wave function:

ΨT = S
[ ∏

i<j

Fij

]
|Φ〉 , (3)

where Fij is a spin-dependent pair correlation function,
and Φ is the uncorrelated Fermi-gas wave function. The
trial or variational wave function is then optimized by min-
imizing the energy as a function of a set of parameters used
to construct the pair correlation functions Fij .
FHNC provides only an approximate evaluation of the

energy for this wave function. In the standard approach,
three-nucleon terms and higher are treated approximately.
Recently, this has been improved by the Urbana group
with an exact treatment of all three-nucleon terms.
We test the approximate treatment of these terms by

performing a variational Monte Carlo calculation includ-
ing an exact evaluation of many-body terms. The differ-
ence between the VMC and FHNC results then provide an
estimate of the importance of the approximations made in
FHNC calculations.
In addition, we use Green’s function Monte Carlo

methods to sample the exact ground-state wave function:

|Ψ0〉 = exp[−Hτ ]|ΨT〉 . (4)

This method provides a way of including correlations be-
yond the simple Jastrow type, and is in principle exact in
the limit τ → ∞. This limit can be difficult to reach in
some cases because of the fermion sign problem. Here we
used a constrained path approach which provides a con-
straint on the sums over the paths included in the path
integral sampled to produce the ground-state wave func-
tion [15]. As a test, the constraint is then removed and
the ground-state energy calculated as a function of the
unconstrained propagation time τ [16]. This method has
been studied extensively in few-nucleon systems, and the
difference between variational and GFMC results can be
quite significant.
The Monte Carlo methods employed in this study are

limited to systems of only a few nucleons as they sum ex-
plicitly over the 2A spin states of the system. Therefore,
the Monte Carlo calculations are performed for 14 neu-
trons in periodic boundary conditions. The volume of the
periodic cube is adjusted to vary the density: ρ = 14/L3.
The potential is truncated at L/2 to simplify comparisons
between integral equation and Monte Carlo methods.
The uncorrelated Fermi-gas wave function with

these boundary conditions occupies states of momentum
k = 0,±kbx̂,±kbŷ, and ±kbẑ, where kb = 2π/L. The ki-
netic energy of this state is 5.82ρ2/3h̄2/2m compared to
the infinite-volume limit of 5.74ρ2/3h̄2/2m.
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Fig. 1. Slater function l for 14 particles in periodic boundary
conditions along the axes and diagonal of the simulation cube
(top and bottom dash-dotted lines) compared to the angle-
averaged result in the cube (solid line) and the infinite-volume
limit (dashed line).

The free finite-volume one-body density matrix is com-
pared to the infinite-volume limit in fig. 1. The density
matrix is:

ρ(r′, r) =
∑

i=1,N

exp[−iki · (r − r′)] = ρl(|r − r′|). (5)

Though in specific directions the density matrix is quite
different from the infinite-volume limit, the angle-averaged
density matrix is in fact quite similar to the complete non-
interacting result.

4 AV8 results

Variational and FHNC calculations have been performed
for the same wave functions at densities of 0.04, 0.08,
0.16, and 0.24 fm−3. The wave functions used have short-
range correlations, even compared to the L/2 restriction
required by periodic boundary conditions. For example,
at ρ = 0.04, L/2 = 3.53 fm while the correlation lengths
are taken to be 1.76 fm. The energy obtained was within
0.25 MeV/A of that obtained by the optimum long-range
correlations typically used in FHNC studies. For these
short-range correlations, the cluster expansion works ex-
tremely well and excellent agreement is obtained between
VMC and FHNC results. The 3-body cluster contributions
in such states are quite small; studies with longer correla-
tion lengths are in progress. In FHNC, the energy depends
only weakly upon the correlation length, and hence the
energy must be evaluated quite accurately in order to de-
termine the correct NN correlations in matter. The exact
treatment of 3-body clusters should be quite valuable in
this regard. Long-range correlations can have important
effects in the electroweak response of the system, particu-
larly at low momentum transfer.
We have also calculated the ground-state energy using

GFMC methods starting with the variational wave func-
tions. The energy as a function of imaginary time for two
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Fig. 2. VMC and GFMC results at ρ = 0.04 fm−3. Open
symbols are VMC results obtained with two different trial wave
functions, GFMC results with constraint are shown at τ = 0
as solid symbols, and without constraint as a function of τ .
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Fig. 3. Energy vs. density (ρ) for FHNC and GFMC calcu-
lations and the Fermi-gas energy. Open symbols are plotted
vs. absolute energy (left scale), solid symbols are plotted as a
fraction of the Fermi-gas energy (right scale).

different initial states is shown in fig. 2. While the VMC
results are quite different, the GFMC results are in good
agreement with each other. The GFMC points shown at
τ = 0 are the results of (approximate) constrained path
calculations, the energy is then plotted as a function of
the imaginary time after the constraint is removed. Re-
sults appear to be well converged and independent of the
trial wave function. Results at moderate densities are sim-
ilar, though by ρ = 0.24 fm−3 the fermion sign problem is
much more severe.
In fig. 3 we compare the ground-state energy as a func-

tion of density for the FHNC and GFMC results. At low
densities the GFMC results are somewhat lower (10%)
than the FHNC results, presumably due to three- and
more-nucleon correlations absent in the FHNC wave func-
tion. These correlations have been found to play a signif-
icant role in light nuclei. At higher densities the curves
cross, and the FHNC energy is slightly lower than the
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Fig. 4. Tensor correlation function at ρ = 0.04 fm−3, VMC
(open symbols) and GFMC (filled symbols). Calculations with
two different trial states are indicated as circles and squares.

GFMC result at 0.24 fm−3. This may be due to inaccura-
cies in the FHNC calculations for three- or more-nucleon
clusters, or to difficulties with calculating fermions at high
densities.
We have also computed pair distribution functions in

neutron matter. The initial trial states, as discussed above,
have very small correlation lengths. Even in such cases,
though, the GFMC finds the long-distance correlations
present in the true ground state. Here we present only the
results for the tensor correlation function, see fig. 4. Again
results obtained with two different trial wave functions are
consistent with each other. The GFMC correlations are
long range and similar in shape to those found in infinite-
volume limit FHNC calculations. Further tests including
trial states with longer-range correlations are being pur-
sued.

5 Simple model

We have also performed studies of a very simple model
of neutron matter, first proposed by George Bertsch [17].
In this model, we consider an interaction which has an
infinite (negative) scattering length, and take the limit
where the range of the interaction goes to zero. This is an
appropriate description for low-density neutron matter,
where the real scattering length is much larger than the
interparticle separation. It may also be used to describe
trapped atomic Fermi gases, where the interaction can be
tuned using Feshbach resonances.
It is clear that the ground-state energy of such a sys-

tem must be a fraction of the Fermi-gas energy, where the
fraction is a constant independent of energy. Also clearly
there must be very strong singlet pairing arising from the
strength of the interaction. The model has many similar-
ities to real neutron matter at low densities because the
nn scattering length (−18.5 fm) is much larger than the
average particle separation 2r0 except at extremely small
densities: ρ = 4/3πr3

0. Even at ρ = 0.02 fm−3, r0 ≈ 2.3 fm,
and 2r0 is still much smaller than the scattering length.

Simultaneously, 2r0 is larger than the range of the real NN
interaction.
We have constructed a short-range potential with in-

finite scattering length, and then used VMC and GFMC
methods to calculate the energy and pair correlation func-
tions. This is a particularly simple case because the in-
teraction can be assumed to be spin independent with
zero range. Therefore, standard spin-independent VMC
and GFMC methods can be used. Of course only S = 0
pairs interact, the interaction in the S = 1 channel is for-
bidden by the Pauli principle.
It is possible to use VMC and GFMCmethods to study

this problem in the exact zero-range limit, and this is cur-
rently being pursued. VMC is fairly straightforward as
long as the trial wave function being considered has the
correct form as the separation between spin singlet pairs
goes to zero. For GFMC, one only needs the exact 2-body
propagator (〈r′ij | exp[−Hijτ ]|rij〉) between neutrons can
be written down analytically for this problem, and used
in the sampling of the paths.
Here we take a simpler approach and use a Gaussian

potential of small range tuned to give an infinite scattering
length:

V (r) = V0 exp[−(rij/r0)2], (6)

where we have chosen r0 = 0.5 fm. To maintain the limit
of an infinite scattering length, the strength V0 must go to
infinity as r0 → 0, but the volume integral of the potential
goes to zero. Corrections to these results are expected to
be small because three-body contributions will necessar-
ily involve a p-wave between particles, which will be very
small inside the range of this interaction. The effect of fi-
nite effective ranges in the potential remain to be studied.
We have solved this problem in two different cases,

first for 14 neutrons at a density of 0.04 fm−3, and for
54 neutrons at a density of 0.02 fm−3. The density is only
relevant because we have used a finite-range potential. For
14 neutrons, we can insert an S = 0 projection operator
in the interaction and the pair correlation operator Fij to
eliminate the interactions and correlations between all p-
wave pairs. For 54 particles this projection operator would
require the use of Auxiliary Field Diffusion Monte Carlo
methods, and hence we use the spin-independent poten-
tial above. In the limit r0 → 0 these two problems are
identical.
For 14 neutrons at ρ = 0.04 fm−3, we find a variational

upper bound of E/A = 8.36±0.05 MeV. For free particles
with these same boundary conditions, E/A = 14.13 MeV,
and hence E(VMC)/E(FG) ≈ 0.60. For the same in-
teraction, GFMC with a constraint yields an energy of
7.06 ± 0.08 MeV, so E(GFMC)/E(FG) = 0.50 ± 0.06.
Relaxing the constraint produced no apparent decrease
in energy. GFMC calculations for 54 particles at ρ =
0.02 fm−3 yields an upper-bound fixed-node result of
E(GFMC)/E(FG) = 0.505 ± 0.010, where we have again
divided by the finite-volume 54-particle Fermi-gas energy
E(FG) = 8.444 MeV. Relaxing the fixed-node condition
up to τ = 0.005 MeV−1 did not produce a statistically
significant lowering of the energy.
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Fig. 5. Spin singlet pair densities for the short-range poten-
tial, VMC (open circles) and GFMC (closed circles) results.
For comparison, results at the same density for the AV8′ NN
interaction are shown.

Unless these wave functions are orthogonal (or nearly
so) to the true ground state, the energy per particle is
approximately 1/2 the Fermi-gas energy. Clearly, there is
strong spin-zero pairing in this simple model, in fig. 5 we
plot the spin singlet pair distribution function. The radial
shape is different from the realistic interaction due to the
short-range repulsion, but both are enhanced significantly
over the free-particle result. The spin triplet channel shows
no such enhancement.

6 Conclusion

We have calculated the properties of neutron matter at
low density using variational and Green’s function Monte
Carlo methods in order to provide a benchmark for other
types of calculations. The particular methods used here
are limited in that they can treat only small numbers of
particles, but they have proven to be very accurate. Auxil-
iary Field Diffusion Monte Carlo methods are potentially
the best treatment.
We have compared the results with FHNC calcula-

tions, and found fairly modest differences in the results
(≈ 10%). The ground-state energy at small densities are
roughly 40% of the Fermi-gas energy, in rough agreement
with the 50% found for the simple short-range interac-
tion model. GFMC calculations of the pair correlation
functions confirm the long-range spin-dependent correla-
tions found in FHNC calculations, even starting from trial
states in which they are absent.

Of course it would be extremely interesting to study
additional properties of the system, including spin sus-
ceptibility, superfluidity, response and finite-temperature
properties. Of course studies with realistic interactions,
adjusted to reproduce both the properties of light nuclei
and bulk properties of matter, are crucial. It will also be
important to study simple models such as those described
here to gain a simpler understanding of the important
mechanisms in such Fermi systems. There is every reason
to be optimistic that both the computational methods and
our understanding of these systems will advance rapidly
over the next few years.

The FHNC calculations were performed by J. Morales, V.R.
Pandharipande, and G. Ravenhall. The author would also like
to thank K. Schmidt for valuable conversations. This work was
supported by the U.S. Department of Energy under contract
W-7405-ENG-36. The calculations have been performed at the
National Energy Research Supercomputer Center.
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